实用的生活知识参考!
当前位置:首页 > 我爱学习 > 说课稿 >数学期末复习计划参考

数学期末复习计划参考

  复习目标

  1、能灵活运用数轴上的点来表示有理数,理解相反数、绝对值,并能用数轴比较有理数的大小。

  2、能熟练运用有理数的运算法则进行有理数的加、减、乘、除、乘方计算,并能用运算律简化计算。

  3、能运用有理数及其运算解决简单的实际问题。

  4、会用计算器进行加、减、乘、除、乘方计算和解决实际问题中的复杂计算。

  复习内容

  一、基础知识填空

  1.0既不是正数,也不是负数。

  2.整数和分数统称有理数。、

  4.规定了原点、正方向、单位长度的直线叫做数轴。

  5.只有符号不同的两个数,我们称其中一个数为另一个数的相反数。

  6.数轴上两个点表示的数,右边的数的总比左边的数的大;正数都大于0,都小于0,正数大于一切负数。

  7.在数轴上一个数所对应的点与原点距离叫做该数的绝对值;正数的绝对值是它本身;负数的绝对值是它的相反数,0的绝对值是0;两个负数比较大小,绝对值大的反而小。

  8.有理数加法法则:同号两数相加,取加数的符号,并把绝对值相加,异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同0相加仍得这个数。

  9.减去一个数,等于加上这个数的相反数。

  10.有理数乘法法则:两数相乘,同号得正,异号得负,任何数与0相乘,积为0

  11.乘积为1的两个有理数互为倒数

  12.求几个相同因数的积的运算叫做乘方,乘方的结果叫做幂

  13.中,a叫做底数,n叫做指数

  14.有理数的混合运算的运算顺序是:先算乘方,再算乘除,最后算加减;如果有括号,就先算括号

  二、典型例题

  例题1:用“”号连接下列各数:,-2.5的相反数,-3.8,3,-4的绝对值

  分析与解:当多个有理数进行比较大小时

  ,往往借助数轴,利用右边的数比左边的数大来比较。可分别用字母表示各个数,再在数轴上表出字母对应的数。

  A:0B:-2.5的相反数C:-3.8D:3E:-4的绝对值

  所以-4的绝对值-2.5的相反数0-3.8

  注意:比较两个以上的数的大小可借助于数轴这一重要工具,把这5个数字用数轴上的点表示,从大到小的排序就自然完成了。

  例题2:把下列各数填在表示相应集合的大括号中

  正数集合:{┄},分数集合:{┄}

  负整数集合:{┄},非负数集合:{┄}

  自然数集合:{┄},有理数集合:{┄}

  分析与解:明确非负数,自然数、负整数和有理数等概念,是解决问题的关键,非负数包括0和正数,自然数包括0和正整数,题中的小数可以当作分数对待。

  注意:各个集合之间的区别与联系,务必弄得清清楚楚,才能保证集合中的数准确无误。

  例题3:计算:

  分析与解:本题可先把加减混合运算统一成加法,再写成简化的代数式,然后利用运算律简化运算。

  注意:应用加法交换律、结合律时一定要注意每个数的性质符号不能改变,根据问题特点,灵活选择合适的解法是解题关键。

  例题4:计算

  分析与解:将题中的除法运算转化为乘法运算以后,可发现本题能利用乘法的运算性质简化运算。

  注意:对于计算题,应仔细观察题目的特点,尽量使用简便方法。

  例题5:计算(-0.25)×4的值

  分析与解:当发现一个题算起来比较麻烦时,我们就应该细观察,多动脑,尽可能找出简便的方法来此题若直接求(-0.25)2002和42004比较难,但细观察可以发现这就是提醒我们利用乘法交换律和结合律,就比较容易求出结果16。

  第四单元

  (字母表示数)

  复习目标

  1、进一步经历探索事物之间的数量关系,并能用字母与代数式表示出来。

  2、理解用字母表示数的意义和代数式的含义,会分析和解释一些简单代数式的实际背景或几何意义,体会数学与现实世界的联系。

  3、掌握合并同类项和去括号的法则,会进行计算。

  4、会求代数式的值,能解释值的实际意义,能根据代数式的值推断代数式反映的规律。