每天进步一点点!
当前位置:首页 > 读书吧 > 教学课件 >相似三角形人教版的教学设计

相似三角形人教版的教学设计

opp整理 | 日期:02-16

导语:

  篇1:相似三角形

  相似三角形的判定定理

  (1)平行于三角形一边的直线和其他两边和两边的延长线相交,所构成的三角形与原三角形相似;

  (2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似;

  (简叙为:两边对应成比例且夹角相等,两个三角形相似.);

  (3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似

  (简叙为:三边对应成比例,两个三角形相似.);

  (4)如果两个三角形的.两个角分别对应相等(或三个角分别对应相等),则有两个三角形相似

  (简叙为:两角对应相等,两个三角形相似.).

  直角三角形相似的判定定理:

  (1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似;

  (2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

  相似三角形的性质

  1、相似三角形对应角相等,对应边成比例。

  2、相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比。

  3、相似三角形周长的比等于相似比。

  4、相似三角形面积的比等于相似比的平方。

  5、相似三角形内切圆、外接圆直径比和周长比都和相似比相同,内切圆、外接圆面积比是相似比的平方。

  篇2:相似三角形

  教学建议

  知识结构

  本节首先给出了相似三角形的定义和表示方法,在此基础上给出相似比的概念,并利用探究法得出三角形相似的预备定理

  重难点分析

  相似三角形的概念是本节的重点也是本节的难点.相似三角形是研究相似形的最重要和最基本的图形,是在全等三角形知识的基础上的拓广和发展,全等形是相似形的特殊情况,研究相似三角形比研究全等三角形更具有一般性.对应边和对应角子相似三角形中占有重要地位,学生在找对应边及对应角时常常出现错误.

  教法建议

  1.从知识的逻辑体系出发,在知识的引入时可考虑先给出相似形的概念,在给出相似三角形的概念

  2.在知识的引入上,可以从生活实例的角度出发,在生活中找几个相似三角形的例子,在此基础上给出相似三角形的概念

  3.在知识的引入上,还可以从知识的建构模式入手,给出几组图形,告诉学生这几组图形都是相似三角形,由学生研究这些图形的边角关系,从而得到对相似三角形的本质认识

  4.在相似三角形概念的巩固中,应注意反例的作用,要适当给出或由学生举出不是相似三角形的例子来加深对概念的理解

  5.在概念的理解过程中,要注意给出不同层次的图形,要求学生从中找出相似三角形,既增加学生的参与又加深学生对概念的理解

  6.在本节内容中对应边及对应角的寻找学生常常出现混淆,教师在教学过程中可设计由浅入深的一系列题组由学生寻找其中的对应边或对应角,并说明根据,有利于知识的掌握

  教学设计示例

  一、教学目标

  1.使学生理解并掌握相似三角形的概念,理解相似比的概念.

  2.使学生掌握预备定理,并了解它的承上启下的作用.

  3.通过预备定理的条件所构成的图形的三种情况,教给学生对一致性问题的思考方法.

  4.通过学习,培养由特殊到一般的唯物辩证法观点.

  二、教学设计

  类比学习、探索发现.

  三、重点、难点

  1.教学重点:是相似三角形的概念及预备定理,教学中要让学生加深对相似三角形概念的本质的认识.

  2.教学难点:是相似比的概念及找对应边.

  四、课时安排

  1课时

  五、教具学具准备

  投影仪、胶片、常用画图工具.

  六、教学步骤

  【复习提问】

  1.什么叫做全等三角形?它在形状上、大小上有何特征?

  2.两个全等三角形的对应也和对应角有什么关系?

  【讲解新课】

  篇3:相似三角形

  相似三角形的本质特征是“具有相同形状”,它们的大小不一定相等,这是和全等三角形的重要区别.为加深学生对相似三角形概念的本质的认识,教学时可预先准备几对相似三角形,让学生观察或测量对应元素的关系,然后直观地得出:两个三角形形状相同,就是他们的对应角相等,对应边成比例.

 1/13    1 2 3 4 5 6 下一页 尾页