相似三角形人教版的教学设计
导语:
3。 相似三角形的识别
(1)如果一个三角形的两角分别与另一个三角形的两角对应相等,那么这两个三角形相似。
(2)如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。
(3)如果一个三角形的三条边和另一个三角形的三条边对应成比例,那么这两个三角形相似。
【典型例题】
例1。 如图,∠1=∠2=∠3,图中相似三角形有( )对。
答:4对
例2。 如图,已知:△ABC、△DEF,其中∠A=50°,∠B=60°,∠C=70°,∠D=40°,∠E=60°,∠F=80°,能否分别将两个三角形分割成两个小三角形,使△ABC所分成的每个三角形与△DEF所分成的每个三角形分别对应相似?
如果可能,请设计一种分割方案;若不能,说明理由。
解:
例3。 (广东省)如图所示,四边形ABCD是平行四边形,点F在BA的延长线上,连结CF交AD于点E。
(1)求证:△CDE∽△FAE;
(2)当E是AD的中点,且BC=2CD时,求证:∠F=∠BCF。
命题意图:相似三角形的识别、特征在解题中的应用。
解析:由AB∥DC得:∠F=∠DCE,∠EAF=∠D
∴△CDE∽△FAE
,又E为AD中点
∴DE=AE,从而CD=FA,结合已知条件,易证
BF=BC,∠F=∠BCF
解:(1)∵四边形ABCD是平行四边形
∴AB∥CD
∴∠F=∠DCE,∠EAF=∠D
∴△CDE∽△FAE
(2)∵E是AD中点,∴DE=AE
由(1)得:
∴CD=AF
∵四边形ABCD是平行四边形
∴AB=CD
∴AB=CD=AF
∴BF=2CD,又BC=2CD
∴BC=BF
∴∠F=∠BCF
思路探究:平行往往是证两个三角形相似的重要条件,利用比例线段也可证明两线段相等。
例4。 在梯形ABCD中,∠A=90°,AD∥BC,点P在线段AB上从A向B运动,
(1)是否存在一个时刻使△ADP∽△BCP;
(2)若AD=4,BC=6,AB=10,使△ADP∽△BCP,则AP的长度为多少?
解:(1)存在
(2)若△ADP∽△BCP,则
设
或
或
或
∴AP长度为4或6
例5。 如图,在平行四边形ABCD中,E为CD上一点,DE:CE=2:3,连结AE、BE、BD,且AE、BD交于点F,则 ( )
A。 4:10:25 B。 4:9:25
C。 2:3:5 D。 2:5:25
(黑龙江省中考题)
思路点拨:运用与面积相关知识,把面积比转化为线段比。
∴选A
例6。 如图,有一批形状大小相同的不锈钢片,呈直角三角形,已知∠C=90°,AB=5cm,BC=3cm,试设计一种方案,用这批不锈钢片裁出面积达最大的正方形不锈钢片,并求出这种正方形不锈钢片的边长。
思路点拨:要在三角形内裁出面积最大的正方形,那么这正方形所有顶点应落在△ABC的边上,先画出不同方案,把每种方案中的正方形边长求出。
解:如图甲,设正方形EFGH边长为x,则AC=4
而CD×AB=AC×BC= ,得
又△CEH∽△CAB,得
于是 ,解得:
如图乙,设正方形CFGH的边长为y cm
由GH∥AC,得:
即 ,解得:
即应如图乙那样裁剪,这时正方形面积达最大,它的边长为
例7。 如图,已知直角梯形ABCD中,∠A=∠B=90°,设 , ,作DE⊥DC,DE交AB于点E,连结EC。
(1)试判断△DCE与△ADE、△DCE与△BCE是否分别一定相似?若相似,请加以证明。
(2)如果不一定相似,请指出a、b满足什么关系时,它们就能相似?
解:(1)△DCE与△ADE一定相似,△DCE与△BCE不一定相似,分别延长BA、CD交于F点
由△FAD∽△FBC,得:
于是FD=DC,从而可证△FED≌△CED
得∠AED=∠DEC
所以△DEC∽△AED
(2)作CG⊥AD交AD延长线于G,
由△AED∽△GDC,有 ,得
要使△DCE与△BCE相似,那么 一定成立
即 ,得
也就是当 时,△DCE与△BCE一定相似。
【模拟试题】(答题时间:40分钟)
1。 如图,已知DE∥BC,CD和BE相交于O,若 ,则AD:DB=____________。