实用的生活知识参考!
当前位置:首页 > 我爱学习 > 说课稿 >《三角形内角和》教学课件

《三角形内角和》教学课件

  三角形内角和教学课件

  学习目标:

  1.通过将多边形分割成三角形,从而探索出多边形内角和的计算公式,并能进行应用.

  2.经历操作、探索等活动,提高分析问题、解决问题的水平,提升从不同角度思考问题的能力.

  学习重点:理解多边形的内角和公式的推导过程,体会化归思想.

  学习难点:从不同角度思考问题.

  导学过程:

  【预习交流】

  1.预习课本P27到P28,记下你的疑惑.

  2.在△ABC中,如果A=2B=3C,则△ABC

  是 (按角分)三角形.

  3.如图是一个五角星,则B+D+E= 3题图 4题图

  4. 如图,B+D+E=

  5.直角三角形的两个锐角平分线所夹的钝角=

  6.在△ABC中, B=36,C=2B,则A= ,B= ,C= .

  7.一个零件的形状如图中阴影部分.按规定A应等于90,B、C应分别是29和21,检验

  人员度量得BDC=141,就断定这个零件不合格.你能说明理由吗?

  8.如图,已知△ABC中,已知B=65,C=45,AD是BC边上的高,AE是BAC的平分线,求DAE的度数.

  【点评释疑】

  1. 课本P27议一议.

  结论:n边形的内角和为(n-2)180.

  2. 课本P28想一想.

  3.应用探究

  (1)一个多边形的内角和是2340,求它的边数.

  (2)一个多边形的各个内角都相等,且一个内角是150,你知道它是几边形吗?

  (3)一个五边形截去一个角后,求剩下的多边形的内角和.

  (4)一个多边形,除去一个内角外,其余各内角的和为2750,求这个多边形的边数.

  (5)如图,求2+4的度数.

  4巩固练习:课本P28练习1、2、3.

  【达标检测】

  1.多边形的内角和可能是( )A.810 B.540 C.180 D.605

  2.如果一个四边形的一组对角都是直角,那么另一组对角可以( )

  A.都是锐角 B.都是钝角 C.是一个锐角和一个直角 D.是一个锐角和一个钝角

  3.一个多边形的边数增加1,则它的内角和将( )A.增加90 B.增加180 C.增加360 D.不变

  4.多边形内角和增加360,则它的边数( )A.增加1 B.增加2 C.增加3 D.不变

  5.若一个多边形的对角线有14条,则这个多边形的'边数是( )A.10 B.7 C.14 D.6

  6.一个十边形所有内角都相等,它的每一个内角等于 .

  7.如图,在四边形ABCD中,1、2分别是BCD和BAD的补角,

  且ADC=140,则2= .

  8.已知九边形中,除了一个内角外,其余各内角之和是1205,求该内角.

  9.将纸片△ABC沿DE折叠使点A落在A处的位置.

  (1)如果A落在四边形BCDE的内部(如图1),A与2之间存在怎样的数量关系?并说明理由.

  (2)如果A落在四边形BCDE的的BE边上,这时图1中的1变为0角,则A与2之间的关系是 .

  (3)如果A落在四边形BCDE的外部(如图2),这时A与1、2之间又存在怎样的数量关系?并说明理由.

  【总结评价】

  1.多边形内角和公式.

  2.探求多边形内角和公式的方法.

  【课后作业】课本P31习题7.5 7、9、10.

  篇2:《三角形内角和》教学课件

  《三角形内角和》教学课件

  教学目标:

  1、通过直观操作的方法,探索并发现三角形内角和等于180。在实验活动中,体验探索的过程和方法。

  2、能应用三角形内角和的性质解决一些简单问题。

  教学过程:

  这是我上的一节研究课,这节课过去好久了,每当我静下心来,总是能感受到学生思考的气息,我不知道用什么样的方式记录学生灵动的智慧和敏锐的思考力。每当我和别人交流的时候,我的眼睛里总是闪着光,说话的声音自然就提高了,然后就会沉浸在学生思考的快乐之中。

  朋友都说我是个教育痴,我的幸福来自于学生的思考和快乐,在这个案例的描述中大家能感受到学生的思维状态给我们的课堂带来的挑战与生机。

  对于三角形内角和是多少度,学生是不陌生的。因为学生有前面认识角的基础和提前预习的习惯。在了解学生学习情况的基础上,我的教学思路是:交流验证问题结论。

  果然不出我所料,几乎所有的学生都能清楚地说出三角形三个内角的和是180,在这个过程中学生知道了内角这个概念,但是他们却不知道怎样才能得出三角形的内角和是180。于是,我提出研究的问题:验证三角形的内角和是180。

 1/26    1 2 3 4 5 6 下一页 尾页