《三角形内角和》教学课件
在整个教学设计中,本着“学贵在思,思源于疑”的思想,不断创设问题情境,让学生去实验、去发现新知识的奥妙,从而让学生在动手操作、积极探索的活动中掌握知识,积累数学活动经验,发展空间观念和推理能力。
篇16:三角形内角和教学反思
1、情境的创设
课伊开始让学生猜角游戏,这时学生对三角形的三个角的关系产生好奇。引发他们探究的欲望。再从他们熟悉的三角板出发,联系他们以有的知识说说,感觉一下。从而很快的进入新课。
2、引导独立思考和合作交流
独立思考是合作交流的前提,经过独立思考的合作才是有效的合作。在想办法求三角形内角和这一核心问题时,先给学生独立思考的时间,再通过小组合作,剪一剪,折一折,拼一拼等方法去探求三角形内角和的秘密。这样学生在动手,动脑,动口的过程中全员参与学习过程,经历知识形成的过程。
篇17: 三角形内角和教学设计
教学目标:
1、透过操作活动探索发现和验证“三角形的内角和是180度”的规律。
2、在操作活动中,培养学生的合作潜力、动手实践潜力,发展学生的空间观念。并运用新知识解决问题。
3.使学生有科学实验态度,激发学生主动学习数学的兴趣,体验数学学习成功的喜悦。
教学重点:探究发现和验证“三角形的内角和180度”这一规律的过程,并归纳总结出规律。
教学难点:对不同探究方法的指导和学生对规律的灵活应用。
教具学具准备:课件、学生准备不同类型的三角形各一个,量角器。
教学过程:
一、创设情景,引出问题
1、猜谜语:(课件)
形状似座山,稳定性能坚。
三竿首尾连,学问不简单。
(打一图形名称)三角形(板书)
2、猜三角形(课件)
师:老师这有3个三角形,每个三角形的一部分被长方形给遮住了,你明白这是什么三角形吗?
师:提问第3个图形时问:被遮住的两个角是什么角?
会是两个直角吗?为什么?
(引导学生开始对“三角形的内角和是多少”进行思索。)
3、引出课题。
师:看来三角形里角必须藏有一些奥秘,这节课我们就来研究有关三角形角的知识“三角形内角和”。(板书课题)
二、探究新知
1、三角形的内角、内角和
(1)什么是三角形内角(课件)
三角形里面的三个角都是三角形的内角。为了方便研究,我们把每个三角形的3个内角分别标上∠1、∠2、∠3。
(2)三角形内角和
师:内角和指的是什么?
生:三角形的三个角的度数的和,就是三角形的内角和。
(多让几个学生说一说)
2、猜一猜。
师:这个三角形的内角和是多少度?
师:是不是所有的三角形的内角和都是180°呢?你能肯定吗?
预设1师:大家意见不统一,我们得想个办法验证三角形的内角和是多少?能够用什么方法验证呢?
3操作验证:小组合作。
选1个自己喜欢的三角形,选喜欢的方法进行验证。
(老师首先为学生带给充分的研究材料,如三种类型的三角形若干个(小组之间的三角形大小都不相同),剪刀,量角器,白纸,直尺等,以及充裕的时间,保证学生能真正地试验,操作和探索,透过量一量、折一折、拼一拼、画一画等方式去探究问题。)
4学生汇报。
(1)教师:汇报的测量结果,有的是180°,有的不是180°,为什么会出现这种状况?
师:有没有别的方法验证。
(2)剪拼
a、学生上台演示。
B、请大家四人小组合作,用他的方法验证其它三角形。
C、展示学生作品。
D、师展示。
(3)折拼
师:有没有别的验证方法?
师:我在电脑里收索到折的方法,请同学们看一看他是怎样折的(课件演示)。
(鼓励学生用心开动脑筋,从不同途径探究解决问题的方法,同时给予学生足够的时间和空间,不断让每个学生自己参与,而且注重让学生在经历观察、操作、分析、推理和想像活动过程中解决问题,发展空间观念和论证推理潜力。)