天天向上!
当前位置:首页 > 民俗演绎 > 其他 >初二数学知识点

初二数学知识点

opp整理 | 日期:04-18

导语:等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。下面就为大家带来了初二数学知识点,我们一起来看看吧!

  篇4:初二数学知识点

  初二下册数学知识点归纳

  第一章一元一次不等式和一元一次不等式组

  一、不等关系

  1、一般地,用符号”<“(或”≤“),”>“(或”≥“)连接的式子叫做不等式.

  2、要区别方程与不等式:方程表示的是相等的关系;不等式表示的是不相等的关系.

  3、准确”翻译“不等式,正确理解”非负数“、”不小于"等数学术语.

  非负数<===>大于等于0(≥0)<===>0和正数<===>不小于0

  非正数<===>小于等于0(≤0)<===>0和负数<===>不大于0

  二、不等式的基本性质

  1、掌握不等式的基本性质,并会灵活运用:

  (1)不等式的两边加上(或减去)同一个整式,不等号的方向不变,即:

  如果a>b,那么a+c>b+c,a-c>b-c.

  (2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即

  如果a>b,并且c>0,那么ac>bc,.

  (3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即:

  如果a>b,并且c<0,那么ac

  2、比较大小:(a、b分别表示两个实数或整式)

  一般地:

  如果a>b,那么a-b是正数;反过来,如果a-b是正数,那么a>b;

  如果a=b,那么a-b等于0;反过来,如果a-b等于0,那么a=b;

  如果a

  即:

  a>b<===>a-b>0

  a=b<===>a-b=0

  aa-b<0

  (由此可见,要比较两个实数的大小,只要考察它们的差就可以了.

  三、不等式的解集:

  1、能使不等式成立的未知数的值,叫做不等式的解;一个不等式的所有解,组成这个不等式的解集;求不等式的解集的过程,叫做解不等式.

  2、不等式的解可以有无数多个,一般是在某个范围内的所有数,与方程的解不同.

  3、不等式的解集在数轴上的表示:

  用数轴表示不等式的解集时,要确定边界和方向:

  ①边界:有等号的是实心圆圈,无等号的是空心圆圈;

  ②方向:大向右,小向左

  八年级上册期末数学复习资料

  第一章勾股定理

  1.勾股定理:直角三角形两直角边的平方和等于斜边的平方;即。

  2.勾股定理的证明:用三个正方形的面积关系进行证明(两种方法)。

  3.勾股定理逆定理:如果三角形的三边长,,满足,那么这个三角形是直角三角形。满足的三个正整数称为勾股数。

  第二章实数

  1.平方根和算术平方根的概念及其性质:

  (1)概念:如果,那么是的平方根,记作:;其中叫做的算术平方根。

  (2)性质:①当≥0时,≥0;当<0时,无意义;②=;③。

  2.立方根的概念及其性质:

  (1)概念:若,那么是的立方根,记作:;

  (2)性质:①;②;③=

  3.实数的概念及其分类:

  (1)概念:实数是有理数和无理数的统称;

  (2)分类:按定义分为有理数可分为整数的分数;按性质分为正数、负数和零。无理数就是无限不循环小数;小数可分为有限小数、无限循环小数和无限不循环小数;其中有限小数和无限循环小数称为分数。

  4.与实数有关的概念:在实数范围内,相反数,倒数,绝对值的意义与有理数范围内的意义完全一致;在实数范围内,有理数的运算法则和运算律同样成立。每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数,即实数和数轴上的点是一一对应的。因此,数轴正好可以被实数填满。

  5.算术平方根的运算律:(≥0,≥0);(≥0,>0)。

  第三章图形的平移与旋转

  1.平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。平移不改变图形大小和形状,改变了图形的位置;经过平移,对应点所连的线段平行且相等;对应线段平行且相等,对应角相等。

  2.旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转。这点定点称为旋转中心,转动的角称为旋转角。旋转不改变图形大小和形状,改变了图形的位置;经过旋转,图形点的每一个点都绕旋转中心沿相同方向转动了相同和角度;任意一对对应点与旋转中心的连线所成的角都是旋转角;对应点到旋转中心的距离相等。