初中数学知识点汇总
导语: 检查时要学会将所求问题当成已知条件,通过计算看是否能推算出题中的一个条件。下面就为大家带来了初中数学知识点汇总,我们一起来看看吧!
一般地,在大量重复试验中,如果事件A发生的频率 会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率(probability), 记作P(A)= p.
注意:(1)概率是随机事件发生的可能性的大小的数量反映.
(2)概率是事件在大量重复试验中频率逐渐稳定到的值,即可以用大量重复试验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同.
3、求概率的方法
(1)用列举法求概率(列表法、画树形图法)
(2)用频率估计概率:一大面,可用大量重复试验中事件发生频率来估计事件发生的概率.另一方面,大量重复试验中事件发生的频率稳定在某个常数(事件发生的概率)附近,说明概率是个定值,而频率随不同试验次数而有所不同,是概率的近似值,二者不能简单地等同.
初中数学知识点归纳3
圆需要大家掌握的知识体系概括起来主要包括3块内容:与圆有关的性质,与圆有关的位置关系,与圆有关的计算。上周给大家总结了与圆有关性质的考点,今天将为大家总结与圆有关的位置关系和与圆有关的计算。
一、考点分析考点一、点和圆的位置关系
设⊙O的半径是r,点P到圆心O的距离为d,则有:
d
d=r点P在⊙O上;
d>r点P在⊙O外。
考点二、过三点的圆
1、过三点的圆
不在同一直线上的三个点确定一个圆。
2、三角形的外接圆
经过三角形的三个顶点的圆叫做三角形的外接圆。
3、三角形的外心
三角形的外接圆的圆心是三角形三条边的垂直平分线的交点,它叫做这个三角形的外心。
4、圆内接四边形性质(四点共圆的判定条件)
圆内接四边形对角互补。
考点三、直线与圆的位置关系
直线和圆有三种位置关系,具体如下:
(1)相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线,公共点叫做交点;
(2)相切:直线和圆有公共点时,叫做直线和圆相切,这时直线叫做圆的切线,
(3)相离:直线和圆没有公共点时,叫做直线和圆相离。
如果⊙O的半径为r,圆心O到直线l的距离为d,那么:
直线l与⊙O相交d
直线l与⊙O相切d=r;
直线l与⊙O相离d>r;
考点四、圆内接四边形
圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。
篇3:初中数学知识点:
初中数学知识点整理:
第一章 有理数
一、有理数的分类
(1)按正负分,分为正有理数、零、负有理数;
(2)按整数和分数分,分为整数和分数;
二、有关概念
(1)相反数:代数意义和几何意义相结合,
(2)绝对值:
(3)倒数
(4)数轴
三、有理数大小的比较
主要分为利用数轴比较和利用绝对值比较
四、有理数的运算
(1)运算法则
①加法法则
②减法法则
③乘法法则
④除法法则
⑤乘方法则
(2)运算律
① 交换律:a、加法交换律 a+b=b+a
b、乘法交换律 a×b=b×a
② 结合律:a、加法结合律 a+b+c=(a+b)+c
b、乘法结合律 a×c+b×c=(a+b)×c ③分配律: (a+b)×c=a×c+b×c
五、科学记数法的概念
六、近似数的概念
示例:
例1 某食品包装袋上标有“净含量386克 4克”,则这包食品的合格净含量范围是( )克——390克。
根据正数、负数的意义可知,这包食品的合格净含量范围是(386-4)克——(386+4)克,即382克——390克。
382
例2 (1)如果a与-2互为相反数,那么a等于( )
A、-2 B、2 C、- D、
根据相反数的特点,即“绝对值相等,符号相反”,可知-2的相反数为2.故正确答案为B。
(2)-5的绝对值是( )
A、5 B、-5 C、 D、-
有绝对值的概念可知,表示-5的点到原点的距离为5,故-5的绝对值为5。
(3)- 的倒数是( )
A、 B、 C、- D、-
根据倒数的定义知- 的倒数为1÷(- )=-