《梯形的面积》数学教学反思
导语:
现在回想起来,如果备课时能够预想到这些情况,那么课堂上这些错误都是可以避免的。我可以在讲授例题6时,借助事先准备好的图形,向学生演示怎样将两个完全相同的梯形转化成一个梯形,并让学生模仿操作,而不是仅仅让学生观看课件里的动画演示。在学生操作例题7时,我可以先向学生分别展示各组图形以便学生对号入座,而不是全完放手让学生自己操作。在解决讨论题时,我可以带领学生结合图形来分析数据,回答问题。如果我能这样安排的话,课堂纪律应该更好一些,教学效果也可以更好。
当然本节课的教学,还存在着其他方面的不足,例如课堂上仍然是以教师为主,教师说的过多,学生处于被动地位。以后我将积极去听师傅董雯雯老师的课,多听多问多请教,多多吸取前辈的宝贵经验。
篇5:《梯形面积》教学反思
教学过程:
多媒体出示梯形,我让学生说说:对于梯形,你们已经知道了什么?学生自由交流,尽情回想着前一天所学的知识,显然他们对于梯形有了较清晰的认识。
接着,我请学生拿出课前准备好的各种梯形,要求先独立思考再动手操作,利用手中的梯形,折一折、剪一剪、拼一拼,看看还能发现什么?
(设计的目的是让学生通过自由操作与联想,为随后推导梯形的面积计算公式打下基础,为实现数学知识的“再创造”作好铺垫。)
每位学生立刻动起手来,他们有的比画,有的对折,有的剪拼,想出一种后,又试着另一种方法,多数学生在尝试中都有所发现。在此基础上,我让学生把自己的发现在四人小组中进行交流,自己则穿梭于小组之间,倾听他们的意见,分享他们成功的喜悦。
然而在汇报时,一学生举手回答:“老师,我发现梯形的面积=(上底+下底)×高÷2”。
(这下可打乱了我的计划,原本这个环节学生只要发现:用两个完全一样的梯形,可以拼成一个平行四边形;一个梯形可以分成两个三角形;把梯形上下对折,再沿折痕剪开后所得的两个小梯形,也能拼成一个平行四边形……现在学生才说了几种想法,就被这位同学下了结论。而且还有几位同学在窃窃私语:这我也知道。该怎么收拾场面呢?我边板书边思考着,犹豫了一会儿,决定还是将问题抛给学生吧!)
我问学生:“对于这位同学的发言,你们有不明白的地方要问吗?”
马上就有一部分同学举起了手:“请问为什么要把上底和下底加起来,再乘高除以2呢?”“你怎么知道梯形的面积=(上底+下底)×高÷2?”……
我紧接着说:“是啊,我们怎么来证明梯形的面积就等于上底加下底的和乘高除以2呢?能不能谈谈你的初步设想?” 我随手在黑板上写下“证明”两字。
生甲说:“可不可以像三角形那样,先拼成一个大的平行四边形,然后来推导?”
生乙说:“能不能像推导平行四边形面积公式那样,通过剪拼,将梯形也转化成已经学过的平面图形,然后再来推导?”
生丙说:“看看梯形的面积与已经学过的平面图形有什么联系,根据它们间的联系进行推导。”
……
(真不简单,之前学过的几种平面图形的面积推导方法,马上就用上了。)
我兴奋地说:“同学们,你们的设想很好,看它是否有价值,关键还在于它能不能经受住实验的验证。请四人小组合作,讨论交流,比比哪一小组探究得最愉快、最有效。”
学生开始合作动手操作、尝试转化,我则深入到每个小组中,听取意见,并对有困难的学生作必要的提示和启发。
(在巡视过程中,我发现大多数小组主要采用了将两个完全一样的梯形,拼成一个平行四边形或长方形,能够用多种方法完整推导出梯形面积计算公式的小组不多。而在我的课件中预设着近10种的方法,学生能想到吗?心里虽然有些着急,但还是希望等会儿交流时,能听到精彩的发言。)
不能再等了,我赶紧让全班进行交流:“不少小组已经成功地推导出了梯形的面积计算公式,请向大家展示你们的研究思路与成果。”
生丁说:“我们组将两个完全一样的梯形拼成一个平行四边形。平行四边形的底相当于梯形的上底加下底,平行四边形的高相当于梯形的高。而梯形的面积是拼成的平行四边形面积的一半,平行四边形的面积 = 底×高,所以梯形的面积=(上底+下底)×高÷2”。