实用的生活知识参考!
当前位置:首页 > 我爱学习 > 说课稿 >新人教版初二数学上册教学设计

新人教版初二数学上册教学设计

  有些量的数值是始终不变的,我们称它们为常量(constant)。

  在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们说x是自变量(independentvariable),y是x的函数(function)。

  如果当x=a时y=b,那么b叫做当自变量的值为a时的函数值。

  形如y=kx(k是常数,k≠0)的函数,叫做正比例函数(proportionalfunction),其中k叫做比例系数。

  形如y=kx+b(k,b是常数,k≠0)的函数,叫做一次函数(linearfunction)。正比例函数是一种特殊的一次函数。

  当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小。

  每个二元一次方程组都对应两个一次函数,于是也对应两条直线。从“形”的角度看,解方程组相当于确定两条直线交点的坐标。

  篇13:人教版初二数学上册知识点

  1、全等三角形的对应边、对应角相等

  2、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等

  3、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等

  4、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等

  5、边边边公理(SSS)有三边对应相等的两个三角形全等

  6、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等

  7、定理1在角的平分线上的点到这个角的两边的距离相等

  8、定理2到一个角的两边的距离相同的点,在这个角的平分线上

  9、角的平分线是到角的两边距离相等的所有点的集合

  10、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)

  篇14:初二人教版上册数学知识点

  1.提公共因式法

  ※1.如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式.这种分解因式的方法叫做提公因式法.

  如:

  ※2.概念内涵:

  (1)因式分解的最后结果应当是“积”;

  (2)公因式可能是单项式,也可能是多项式;

  (3)提公因式法的理论依据是乘法对加法的分配律,即:

  ※3.易错点点评:

  (1)注意项的符号与幂指数是否搞错;

  (2)公因式是否提“干净”;

  (3)多项式中某一项恰为公因式,提出后,括号中这一项为+1,不漏掉.

  2.运用公式法

  ※1.如果把乘法公式反过来,就可以用来把某些多项式分解因式.这种分解因式的方法叫做运用公式法.

  ※2.主要公式:

  (1)平方差公式:

  (2)完全平方公式:

  ¤3.易错点点评:

  因式分解要分解到底.如就没有分解到底.

  ※4.运用公式法:

  (1)平方差公式:

  ①应是二项式或视作二项式的多项式;

  ②二项式的每项(不含符号)都是一个单项式(或多项式)的平方;

  ③二项是异号.

  (2)完全平方公式:

  ①应是三项式;

  ②其中两项同号,且各为一整式的平方;

  ③还有一项可正负,且它是前两项幂的底数乘积的2倍.

  3.因式分解的思路与解题步骤:

  (1)先看各项有没有公因式,若有,则先提取公因式;

  (2)再看能否使用公式法;

  (3)用分组分解法,即通过分组后提取各组公因式或运用公式法来达到分解的目的;

  (4)因式分解的最后结果必须是几个整式的乘积,否则不是因式分解;

  (5)因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止.

  4.分组分解法:

  ※1.分组分解法:利用分组来分解因式的方法叫做分组分解法.

  如:

  ※2.概念内涵:

  分组分解法的关键是如何分组,要尝试通过分组后是否有公因式可提,并且可继续分解,分组后是否可利用公式法继续分解因式.

  ※3.注意:分组时要注意符号的变化.

  5.十字相乘法:

  ※1.对于二次三项式,将a和c分别分解成两个因数的乘积,,,且满足,往往写成的形式,将二次三项式进行分解.

  如:

  ※2.二次三项式的分解:

  ※3.规律内涵:

  (1)理解:把分解因式时,如果常数项q是正数,那么把它分解成两个同号因数,它们的符号与一次项系数p的符号相同.