八年级上册数学答案
考点: 轴对称-最短路线问题;坐标与图形性质.
分析: 连接AB并延长与x轴的交点M,即为所求的点.求出直线AB的解析式,求出直线AB和x轴的交点坐标即可.
解答: 解:设直线AB的解析式是y=kx+b,
把A(1,5),B(3,1)代入得: ,
解得:k=2,b=7,
即直线AB的解析式是y=2x+7,
把y=0代入得:2x+7=0,
x= ,
即M的坐标是( ,0),故答案为( ,0).
点评: 本题考查了轴对称,用待定系数法求一次函数的解析式等知识点的应用,关键是找出M的位置.
三、解答题(共10小题,满分68分)
17.求下列各式中的x:
(1)25x2=36;
(2)(x1)3+8=0.
考点: 立方根;平方根.
分析: (1)先两边开方,即可得出两个一元一次方程,求出方程的解即可;
(2)先移项,再根据立方根定义开方,即可得出一个一元一次方程,求出方程的解即可.
解答: 解:(1)25x2=36,
5x=±6,
x1= ,x2= ;
(2)(x1)3+8=0,
(x1)3=8,
x1=2,
x=1.
点评: 本题考查了立方根和平方根的应用,解此题的关键是能关键定义得出一个或两个一元一次方程.
18.如图,长2.5m的梯子靠在墙上,梯子的底部离墙的底端1.5m,求梯子的顶端与地面的距离h.
考点: 勾股定理的应用.
分析: 在Rt△ABC中,利用勾股定理即可求出h的值.
解答: 解:在Rt△ABC中,AB2=AC2BC2,
∵AC=2.5m,BC=1.5m,
∴AB= =2m,
即梯子顶端离地面距离h为2m.
点评: 本题考查了勾股定理的应用,解答本题的关键是掌握勾股定理在直角三角形中的表达式.
19.某校准备在校内倡导“光盘行动”,随机调查了部分同学某年餐后饭菜的剩余情况,调查数据的部分统计结果如表:
某校部分同学某午餐后饭菜剩余情况调查统计表
项目 人数 百分比
没有剩 80 40%
剩少量 a 20%
剩一半 50 b
剩大量 30 15%
合计 200 100%
(1)根据统计表可得:a= 40 ,b= 25% .
(2)把条形统计图补充完整,并画出扇形统计图;
(3)校学生会通过数据分析,估计这次被调查的学生该午餐浪费的食物可以供20人食用一餐,据此估算,这个学校1800名学生该午餐浪费的食物可供多少人食 用一餐?
考点: 条形统计图;用样本估计总体;统计表;扇形统计图.
分析: (1)根据没剩余的人数是80,所占的百分比是40%,即可求得总人数,然后利用百分比的定义求得a、b的值;
(2)求得剩少量的人数,求得对应的百分比,即可作出扇形统计图;
(3)利用1800除以调查的总人数,然后乘以20即可.
解答: 解:(1)统计的总人数是:80÷40%=200(人),
则a=200×20%=40,
b= ×100%=25%;
(2)剩少量的人数是:200805030=40(人),
扇形统计图是:
;
(3) ×20=180(人).
点评: 本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
20.已知:如图,AB=AC,BD=CD,DE⊥AB,垂足为E,DF⊥AC,垂足为F.求证:DE=DF.
考点: 全等三角形的判定与性质.
专题: 证明题.
分析: 连接AD,利用“边边边”证明△ABD和△ACD全等,再根据全等三角形对应边上的高相等证明.
解答: 证明:如图,连接AD,
在△ABD和△ACD中,
,
∴△ABD≌△ACD(SSS),
∵DE⊥AB,DF⊥AC,
∴DE=DF(全等三角形对应边上的高相等).
点评: 本题考查了全等三角形的判定与性质,作辅助线构造出全等三角形是解题的关键.
21.(6分) (秋南京期末)如图,在正方形网格中,每个小正方形的边长为1个单位长度,已知△ABC的顶点A、C的坐标分别为(4,4)、(1,2),点B坐标为(2,1).
(1)请在图中正确地作出平面直角坐标系,画出点B,并连接AB、BC;
(2)将△ABC沿x轴正方向平移5个单位长度后,再沿x轴翻折得到△DEF,画出△DEF;