人教版八年级数学上册教案
2.三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等
四、(等腰三角形)知识点回顾
1.等腰三角形的性质
①.等腰三角形的两个底角相等。(等边对等角)
②.等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。(三线合一)
2、等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等。(等角对等边)
五、(等边三角形)知识点回顾
1.等边三角形的性质:等边三角形的三个角都相等,并且每一个角都等于600。
2、等边三角形的判定:
①三个角都相等的三角形是等边三角形。
②有一个角是600的等腰三角形是等边三角形。
3.在直角三角形中,如果一个锐角等于300,那么它所对的直角边等于斜边的一半。
①、等腰三角形的性质
定理:等腰三角形的两个底角相等(简称:等边对等角)
推论1:等腰三角形顶角平分线平分底边并且垂直于底边。即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。
推论2:等边三角形的各个角都相等,并且每个角都等于60°。
②、等腰三角形的其他性质:
(1)等腰直角三角形的两个底角相等且等于45°
(2)等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。
(3)等腰三角形的三边关系:设腰长为a,底边长为b,则
(4)等腰三角形的三角关系:设顶角为顶角为∠A,底角为∠B、∠C,则∠A=180°—2∠B,∠B=∠C=
③、等腰三角形的判定
等腰三角形的判定定理及推论:
定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。这个判定定理常用于证明同一个三角形中的边相等。
推论1:三个角都相等的三角形是等边三角形
推论2:有一个角是60°的等腰三角形是等边三角形。
推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
④、三角形中的中位线
连接三角形两边中点的线段叫做三角形的中位线。
(1)三角形共有三条中位线,并且它们又重新构成一个新的三角形。
(2)要会区别三角形中线与中位线。
三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。
三角形中位线定理的作用:
位置关系:可以证明两条直线平行。
数量关系:可以证明线段的倍分关系。
常用结论:任一个三角形都有三条中位线,由此有:
结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半。
结论2:三条中位线将原三角形分割成四个全等的三角形。
结论3:三条中位线将原三角形划分出三个面积相等的平行四边形。
结论4:三角形一条中线和与它相交的中位线互相平分。
结论5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等。
学好数学的方法有哪些
多做题是学好初中数学的关键
想要学好初中数学,就要多做数学题。只有学生掌握了各种各样的题型,那么你对于初中数学的解题思路才能够了解,这样通过积累就会使自己的解题思路和思维丰富。在刚开始的时候,可以从最简单的基础题入手,学生最好是以课本上的习题为主,一定要将课本上的习题弄懂,这样打好基础,才会为接下来的做其他类型的题最好准备。然后在开始做一些课外的有难度的习题,目的是为了帮助学生开拓自己的思路,提高自己分析能力。
正确的对待初中数学考试
初中学生数学想要打高分,就要把大部分的精力放在基础知识和解题的基本技能上面,因为在初中数学的考试中,基础题占了试卷的大部分,所以基础知识一定要记牢固。另外还要摆正自己的心态,这样在答初中数学题的时候思路才能清晰。
如何背诵概念和公式
有很多同学对概念的理解只是停留在文字表面,对概念的特殊情况重视不够。背诵不是对概念和公式一味的死记硬背,要与实际题目的联系。这样就才能很好的将学到的知识点与解题联系起来。