每天进步一点点!
当前位置:首页 > 读书吧 > 说课稿 >高三数学说课稿

高三数学说课稿

opp整理 | 日期:07-13

导语:

  1a21∴1a241

  2a24aa2

  ∴解集是{aa2}

  变式1:设定义在[-2,2]上的偶函数f(x)在区间[0,2]上单调递减,若f(1m)f(m),求实数m的取值范围。|1m||m|简解:依题意得21m2

  2m2121m

  (注意数形结合解题)

  变式2:设定义在[-2,2]上的偶函数y=f(x+1)在区间[0,2]上单调递减,若f(1-m)

  11m3简解:依题意得1m3

  |1m1||m1|1m22

  例4,已知函数f(x)满足f(x+y)+f(x-y)=2f(x)·f(y),(x,yR),且

  (1)f(0)=1,(2)f(x)的图象关于y轴对称。f(0)0,试证:

  (分析:抽象函数奇偶性的证明,常用到赋值法及奇偶性的定义)。解:(1)令x=y=0,有f(0)f(0)2f2(0),又f(0)0∴f(0)1。

  (2)令x=0,得f(y)f(y)2f(0)f(y)2f(y)

  ∴f(y)f(y)(yR)

  ∴f(x)为偶函数,∴f(x)的图象关于y轴对称。

  归类总结出抽象函数的解题方法与技巧。

  变式训练:设f(x)是定义在(0,)上的减函数,且对于任意x,y(0,)x都有f()f(x)f(y)y

  1(1)求f(1);(2)若f(4)=1,解不等式f(x6)f()2x

  (点明题型特征及解题方法)

  三、小结

  1、奇偶性的判定方法;

  2、奇偶性的灵活应用(特别是对称性);

  3、求解抽象不等式及抽象函数的常用方法。

  四、课后练习及作业

  1、完成《教学与测试》相应习题。

  2、完成《导与练》相应习题。