实用的生活知识参考!
当前位置:首页 > 我爱学习 > 说课稿 >人教版六年级下册比例尺教学设计

人教版六年级下册比例尺教学设计

(二)学习比例尺的实际应用。数学从本质上讲是一种文化,数学教育不仅是知识的传授,能力的培养,而且还应是一种文化熏陶。皮亚杰说过:“儿童是具有主动性的,所教的东西能引起儿童的兴趣、符合他们的需要才能有效地促使他们发展,兴趣是学生认知活动的契机和直接诱因。”因此,我没有单纯地“教教材”,而是着眼于“用教材教”,充分利用了莆田的乡土文化资源,创设了一个以莆田旅游文化为主题的情境,并提出了制作《莆田市交通旅游图》的任务,引领学生积极主动地参与到实践活动中去,通过实际应用来加深对比例尺的理解,同时渗透热爱家乡的思想教育。

三、实践创造巩固深化

“数学来源于生活,又应该为生活服务。”这是《课程标准》所强调指出的。在巩固练习中,我继续贯彻这一思想,充分利用前面创设的“旅游”情境,让学生开展创造性的实践活动。

四、总结引新拓展延伸

篇4:比例尺(六年级)(人教版六年级教案设计)

教学目标

1.使学生理解比例尺的意义并能正确地求出平面图的比例尺.

2.使学生能够应用比例知识,根据比例尺求图上距离或实际距离.

教学重点

理解比例尺的意义,能根据比例尺正确求出图上距离或实际距离.

教学难点

设未知数时长度单位的使用.

教学步骤

一、复习准备

(一)填空.

1千米=( )米 1分米=(   )厘米

1米=( )分米 1厘米=( )毫米

30米=( )厘米 300厘米=( )分米

15千米=( )厘米 40毫米=( )厘米

(二)解比例.

二、新授教学

谈话导入:(出示准备好的地图、平面图)同学们请看,这些分别是祖国地图、本省地图和学校的平面图.在绘制这些地图和平面图的时候,都需要把实际的距离按一定的比例缩小,再画在图纸上.有时由于机器零件比较小,需要把实际距离扩大一定的倍数以后,再画在图纸上.不管是哪种情况,都需要确定图上距离和实际距离的比.今天我们就来学习这方面的知识--比例尺.

板书课题:比例尺

(一)教学例4(课件演示:比例尺)

例4.设计一座厂房,在平面图上用10厘米的距离表示地面上10米的距离.求图上距离和实际距离的比.

1.读题回答:这道题告诉了我们什么?要求什么?

教师板书:图上距离∶实际距离

2.思考.

(1)要求图上距离与实际距离的比,能不能直接用题中给出的两个数列式?为什么?应该怎么办?

(2)是把厘米化成米,还是把米化成厘米?为什么?应该怎样化?

教师板书:10米=1000厘米

3.求出图上距离和实际距离的比.

教师板书:10∶1000=1∶100或  =

答:图上距离和实际距离的比是1∶100.

4.揭示比例尺的意义.

教师说明:因为在绘制地图和其他平面图时,经常要用到“图上距离和实际距离的比”,所以就给它起了个新的名字--比例尺.(教师在“图上距离∶实际距离”的后面板书:=比例尺)有时图上距离和实际距离的比也可以写成分数形式.

板书:

图上距离是比的前项,实际距离是比的后项,比例尺是图上距离比实际距离得到的最简单的整数比.

教师强调:

(1)比例尺与一般的尺不同,它是一个比,不应带有计量单位.

(2)求比例尺时,前、后项的长度单位一定要化成同级单位.

(3)比例尺的前项,一般应化简成“1”.如果写成分数的形式,分子也应化简成“1”.

5.练习

北京到天津的实际距离是120千米,在一幅地图上量得两地的图上距离是2厘米,求这幅地图的比例尺.

(二)教学例5(课件演示:比例尺)

例5.在比例尺是1∶6000000的地图上,量得南京到北京的距离是15厘米.南京到北京的实际距离大约是多少千米?

教师提问:题目中告诉了我们什么已知条件?要求什么?

根据比例尺的意义,已知比例尺和图上距离,能不能用解比例的方法求出实际距离呢?怎样求?

(因为  ,已知图上距离为15厘米,比例尺为  ,要求的实际距离不知道,可用  表示,所以可列比例式  )