实用的生活知识参考!
当前位置:首页 > 我爱学习 > 说课稿 >人教版绝对值教学设计

人教版绝对值教学设计

证明:

例2 已知 ,求证 .

证明:

点评:这是为今后学习极限证明做准备,要习惯和“配凑”的方法。

例3 求证 .

证法一:(直接利用性质定理)在 时,显然成立.

当 时,左边

.

证法二:(利用函数的单调性)研究函数 在 时的单调性。

设 ,

, 在 时是递增的.

又 ,将 , 分别作为 和 ,则有

(下略)

证法三:(分析法)原不等式等价于 ,

只需证 ,

即证

又 ,

显然成立.

原不等式获证。

还可以用分析法证得 ,然后利用放缩法证得结果。

三、随堂练习

1.①已知 ,求证 .

②已知 求证 .

2.已知 求证:

① ;

② .

3.求证 .

答案:1. 2. 略

3. 与 同号

四、小结

1.定理 . 把 、 、  看作是三角形三边,很象三角形两边之和大于第三边,两边之差小于第三边,这样理解便于记忆,此定理在后面学习复数时,可以推广到比较复数的模长,并有其几何意义,有时也称其为“三角形不等式”.

2.平方法能把绝对值不等式转化为不含绝对值符号的不等式,但应注意两边非负时才可平方,有些证明并不容易去掉绝对值符号,需用定理 及其推论。

3.对 要特别重视.

五、布置作业

1.若 ,则不列不等式一定成立的是( )

A. B.

C. D.

2.设 为满足 的实数,那么( )

A. B.

C. D.

3.能使不等式 成立的正整数 的值是__________.

4.求证:

(1) ;

(2) .

5.已知 ,求证 .

答案:1. D 2. B 3.1、2、3

4.

5.

=

注:也可用分析法.

六、板书设计

6.5(一)

1.复习

2.定理

推论

例1

例2

例3

课堂训练

《绝对值的定义》教学设计

篇8:《绝对值》教学反思

动手实践、自主探究与合作交流是学生学习数学的重要方式。数学学习活动应当是一个生动活拨的、主动的和富有个性的过程。我们激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能,数学思想和方法,获得广泛的数学活动的经验。学生是数学学习的主任,教师应该怎么成为数学学习的组织者、引导者与合作者呢?

先看教学片段:

师:同学们,上新课之前老师先了解一下,你们的家在学校的哪一边?

生:(七嘴八舌,有的说在南边,有的说在北边,有的说在东边……)

师:不管我们的家住在学校的哪一边,家和学校有没有一定的距离?

生:有。

师:同学们再想一想,从车站开出两辆计程车,一辆往东、一辆往西,车上的乘客是不是都要按里程付费?

生:是。不管往哪个方向开,都要按行车里程收费。

师:体育课上我们投铅球,你可以在规定的范围内朝任意一个方向投,铅球的着落点和你的投球地点有没有一定的距离?

生:有。无论投到哪个方向,它们之间都有距离。

师:同学们,以上我们举的例子都是日常生活中经常出现的量:家到学校的路程、计程车的计费、投铅球的距离等等,它们和方向有关吗?

生:都没有关系。

师:请同学们画一条数轴,并观察表示3的点与原点之间有几个单位长度?

生画并回答:3个单位长度。

师:还有哪一个数表示的点与原点也相距3个单位长度?

生:表示―3的点与原点也相距3个单位长度。

师:同学们说得非常好!所以我们说+3和―3的绝对值相等,+5和―5的绝对值相等(指着数轴)。同学们,就刚才我们所讲的内容,请大家猜一猜:什么是绝对值呢?大家分组讨论。

生1:我认为绝对值是指两个地方间的距离。

生2:我认为绝对值是指两个点之间的距离。

师:谁能联系数轴再说一说?

生3:我认为一个数的绝对值就是数轴上表示这个数的点与原点之间的距离。