每天进步一点点!
当前位置:首页 > 读书吧 > 说课稿 >八年级数学说课稿精选

八年级数学说课稿精选

opp整理 | 日期:06-30

导语:

  例如,和是互为相反数,和互为倒数。

  ,,,。

  三、想一想

  让学生思考以下问题

  1、a是一个实数,它的相反数为,绝对值为;

  2、如果,那么它的倒数为。

  意图:从复习入手,类比有理数中的相关概念,建立实数的相反数、倒数和绝对值等概念,它们的意义和有理数范围内的意义是一致的

  让学生回答后,教师归纳并板书:实数a的相反数为,绝对值为,若它的倒数为(教师指明:0没有倒数)

  增加练习:(多媒体展示)第一组1.的绝对值是

  2、a是一个实数,它的绝对值是

  第二组:1、的相反数是,绝对值是

  2、绝对值等于的数是,3、的绝对值是

  4、正实数的绝对值是,0的绝对值是,负实数的绝对值是

  例题:求下列各数的相反数、倒数、绝对值

  (1)(2)(3)学生上黑板完成,教师巡视学生如何书写,对发现的问题及时处理,最后与学生共同纠正。

  明晰:实数和有理数一样,可以进行加、减、乘、除、乘方运算,而且有理数的运算法则与运算律对实数仍然适用。(媒体展示两个举例)

  四、议一议。探索用数轴上的点来表示无理数

  1、每个有理数都可以用数轴上的点表示,那么无理数是否也可以用数轴上的点来表示呢?你能在数轴上找到表示、和这样的无理数的点吗?

  2、多媒体展示的做法和和的做法

  如图OA=OB,数轴上A点对应的数是多少?

  让学生充分思考交流后,引导学生达成以下共识:

  探讨用数轴上的点来表示实数,将数和图形联系在一起,让学生进一步领会数形结合的思想,利用数轴也可以直观地比较两个实数的大小.

  (1)A点对应的数等于,它介于1与2之间。

  (2)每一个有理数都可以用数轴上的点表示

  (3)每一个无理数都可以用数轴上的点来表示

  (4)每个实数都可以用数轴上的点来表示,每一个实数都可以用数轴上的点来表示;反过来数轴上的每一个点都表示一个实数。即实数和数轴上的点是一一对应的。

  (4)和有理数一样,在数轴上,右边的点比左边的点表示的数大。

  五、随堂练习(多媒体展示)

  第一组:判断题:

  ①实数不是有理数就是无理数、②无理数都是无限不循环小数.③无理数都是无限小数④带根号的数都是无理数.⑤无理数一定都带根号.⑥两个无理数之积不一定是无理数.⑦两个无理数之和一定是无理数.⑧数轴上的任何一点都可以表示实数.

  第二组:

  1.判断下列说法是否正确:(1)无限小数都是无理数;(2)无理数都是无限小数;(3)带根号的数都是无理数。

  2、求下列各数的相反数、倒数和绝对值:

  (1)(2)(3)

  3、在数轴上作出对应的点。

  意图:通过以上练习,检测学生对实数相关知识的掌握情况.

  六、小结

  1、实数的概念

  2、实数可以怎样分类

  3、实数a的相反数为,绝对值,若,它的倒数为。

  4、数轴上的点和实数一一对应。

  七、作业

  课本习题2.81、2、3题

  结束语:多媒体展示:

  人生的价值,并不是用时间,而是用深度去衡量的。

  ——列夫托尔斯泰

  八、板书设计:

  实数

  1、实数的概念4、实数与数轴上的点的关系

  2、实数的分类5、例题

  3、实数a的相反数为,6、学生练习

  绝对值,若,它的倒数为

  一、教材分析:

  1、说课内容:人教版义务教育课程标准实验教材数学八年级上册第十三章《实数》第一节《平方根》第一课时:算术平方根。

  2、 教材的地位与作用

  本课教材所处位置是本章的第一节,学生对数的认识要由有理数范围扩大到实数范围,而本课是学习无理数的前提,是学习实数的衔接与过渡,并且是以后学习实数运算的基础,对以后学习物理、化学等知识及实际问题的解决起着举足轻重的作用。

  3、 教学重点、难点

  教学的重点:算术平方根概念的引入

  教学的难点:根据算术平方根的概念正确求出非负数的算术平方根,解决实际问题,