精选高二数学说课稿范文五篇
导语:
(5)_>15.(不是)
让学生思考、辨析、讨论解决,且通过练习,引导学生总结:判断一个语句是不是命题,关键看两点:第一是“陈述句”,第二是“可以判断真假”,这两个条件缺一不可.疑问句、祈使句、感叹句均不是命题.
练习
判断下列语句中哪些是命题?是真命题还是假命题?
(1)求证∏是无理数
(2)若_是实数,则_2+4_+5≥0
4.命题的构成――条件和结论
上面例1中的(2)(4)具有“若p,则q”的形式.在数学中,这种形式的命题是常见的.
“若p,则q”也可写成“如果p,那么q”“只要p,就有q”等形式.
其中p叫做命题的条件,q叫做命题的结论.
例2指出下列命题中的条件p和结论q;
(1)若整数a能被2整除,则a是偶数;
(2)若四边形是菱形,则它的对角线互相垂直且平分
解:(1)条件p:整数a能被2整除,结论q:整数a是偶数;
(2)条件p:四边形是菱形,结论q:四边形的对角线互相垂直且平分.
有一些命题表面上不是“若p,则q”的形式,但可以改写成“若p,则q”的形式,例如:
垂直于同一条直线的两个平面平行.
若两个平面垂直于同一条直线,则这两个平面平行.
例3将下列命题改写成“若p,则q”的形式,并判断真假;
(1)垂直于同一条直线的两条直线平行;
(2)负数的立方是负数;
(3)对顶角相等;
解:(1)若两条直线垂直于同一条直线,则这两条直线平行,它是假命题。
(2)若一个数是负数,则这个数的立方是负数。它是真命题。
(3)若两个角是对顶角,则这两个角相等。它是真命题。
5.练习:P4:1.2.3
6.课堂小结
(1)、命题的概念
(2)、能指出命题的条件和结论
7.思考题
一,下列四个命题中,命题(1)与命题(2)(3)(4)的条件和结论之间分别有什么系?
(1)若f(_)是正弦函数,则f(_)是周期函数;
(2)若f(_)是周期函数,则f(_)是正弦函数;
(3)若f(_)不是正弦函数,则f(_)不是周期函数;
(4)若f(_)不是周期函数,则f(_)不是正弦函数;
二,四种命题中任意两个命题之间有关系吗?是什么关系?它们的真假性之间有关系吗?是什么关系?
8.作业P8:习题1.1A组第1、题