天天向上!
当前位置:首页 > 民俗演绎 > 其他 >新版七年级数学知识点

新版七年级数学知识点

opp整理 | 日期:04-18

导语:对于一个应用题设出的未知数越多,列方程组可能容易一些,但解方程组可能比较麻烦,下面就为大家带来了新版七年级数学知识点,我们一起来看看吧!

  (1)两数相乘,同号为正,异号为负,并把绝对值相乘;

  (2)任何数同零相乘都得零;

  (3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.

  有理数乘法的运算律:

  (1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);

  (3)乘法的分配律:a(b+c)=ab+ac .

  有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数。

  篇2:七年级数学知识点

  一元一次方程的应用

  1.一元一次方程解应用题的类型

  (1)探索规律型问题;

  (2)数字问题;

  (3)销售问题(利润=售价﹣进价,利润率=利润进价×100%);

  (4)工程问题(①工作量=人均效率×人数×时间;②如果一件工作分几个阶段完成,那么各阶段的工作量的和=工作总量);

  (5)行程问题(路程=速度×时间);

  (6)等值变换问题;

  (7)和,差,倍,分问题;

  (8)分配问题;

  (9)比赛积分问题;

  (10)水流航行问题(顺水速度=静水速度+水流速度;逆水速度=静水速度﹣水流速度).

  2.利用方程解决实际问题的基本思路:

  首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答。

  列一元一次方程解应用题的五个步骤

  (1)审:仔细审题,确定已知量和未知量,找出它们之间的等量关系.

  (2)设:设未知数(x),根据实际情况,可设直接未知数(问什么设什么),也可设间接未知数.

  (3)列:根据等量关系列出方程.

  (4)解:解方程,求得未知数的值.

  (5)答:检验未知数的值是否正确,是否符合题意,完整地写出答句.

  篇3:七年级数学知识点

  变量之间的关系

  一理论理解

  1、若Y随X的变化而变化,则X是自变量Y是因变量。

  自变量是主动发生变化的量,因变量是随着自变量的变化而发生变化的量,数值保持不变的量叫做常量。

  3、若等腰三角形顶角是y,底角是x,那么y与x的关系式为y=180-2x.

  2、能确定变量之间的关系式:相关公式①路程=速度×时间②长方形周长=2×(长+宽)③梯形面积=(上底+下底)×高÷2④本息和=本金+利率×本金×时间。⑤总价=单价×总量。⑥平均速度=总路程÷总时间

  二、列表法:采用数表相结合的形式,运用表格可以表示两个变量之间的关系。列表时要选取能代表自变量的一些数据,并按从小到大的顺序列出,再分别求出因变量的对应值。列表法的特点是直观,可以直接从表中找出自变量与因变量的对应值,但缺点是具有局限性,只能表示因变量的一部分。

  三.关系式法:关系式是利用数学式子来表示变量之间关系的等式,利用关系式,可以根据任何一个自变量的值求出相应的因变量的值,也可以已知因变量的值求出相应的自变量的值。

  四、图像注意:a.认真理解图象的含义,注意选择一个能反映题意的图象;b.从横轴和纵轴的实际意义理解图象上特殊点的含义(坐标),特别是图像的起点、拐点、交点

  八、事物变化趋势的描述:对事物变化趋势的描述一般有两种:

  1.随着自变量x的逐渐增加(大),因变量y逐渐增加(大)(或者用函数语言描述也可:因变量y随着自变量x的增加(大)而增加(大));

  2.随着自变量x的逐渐增加(大),因变量y逐渐减小(或者用函数语言描述也可:因变量y随着自变量x的增加(大)而减小).

  注意:如果在整个过程中事物的变化趋势不一样,可以采用分段描述.例如在什么范围内随着自变量x的逐渐增加(大),因变量y逐渐增加(大)等等.

  九、估计(或者估算)对事物的估计(或者估算)有三种:

  1.利用事物的变化规律进行估计(或者估算).例如:自变量x每增加一定量,因变量y的变化情况;平均每次(年)的变化情况(平均每次的变化量=(尾数-首数)/次数或相差年数)等等;

  2.利用图象:首先根据若干个对应组值,作出相应的图象,再在图象上找到对应的点对应的因变量y的值;

  3.利用关系式:首先求出关系式,然后直接代入求值即可.