实用的生活知识参考!
当前位置:首页 > 我爱学习 > 说课稿 >人教版六年级下册比例尺教学设计

人教版六年级下册比例尺教学设计

篇13: 《比例尺》教学设计

教学目标:

1、结合具体情境,认识比例尺,能根据图上距离,实际距离,比例尺中的两个量求第三个量。

2、运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,学会解决生活中的一些实际问题,进一步体会数学与日常生活的密切联系。

教学重难点:

认识比例尺,能根据三个量中的两个量求第三个量,运用比例尺的知识解决实际问题的能力。

教学过程:

一、呈现情境图

思考、讨论。

我家的房屋平面图

1、比例尺1:100是什么意思?

图上距离。

2、比例尺=--------------

实际距离。

3、独立完成P30页第2、3题。

4、P30页第4题,怎样求窗户的图上距离?注意比成相成的单位后再计算。

5、指导完成P30页第5题。

注意求比例尺时,图上距离与实际距离的单位要统一。

P31页第1题,说明清楚两地距离一般假设是直线距离,计算时,注意单位换算。

P31页第2题,自己尝试独立完成。

放手让学生自己研究。

教师对困难的学生加以指导。

试一试。

练一练。

篇14: 比例尺教学设计

比例尺教学设计

西山底学校杨致峰

教学目标

1.使学生理解比例尺的好处并能正确地求出平面图的比例尺.

2.使学生能够应用比例知识,根据比例尺求图上距离或实际距离.

教学重点

理解比例尺的好处,能根据比例尺正确求出图上距离或实际距离.

教学难点

设未知数时长度单位的使用.

教学步骤

一、复习准备

(一)填空.

1千米=()米1分米=()厘米

1米=()分米1厘米=()毫米

30米=()厘米300厘米=()分米

15千米=()厘米40毫米=()厘米

(二)解比例.

二、新授教学

谈话导入:(出示准备好的地图、平面图)同学们请看,这些分别是祖国地图、本省地图和学校的平面图.在绘制这些地图和平面图的时候,都需要把实际的距离按必须的比例缩小,再画在图纸上.有时由于机器零件比较小,需要把实际距离扩大必须的倍数以后,再画在图纸上.不管是哪种状况,都需要确定图上距离和实际距离的比.这天我们就来学习这方面的知识比例尺.

板书课题:比例尺

(一)教学例4(课件演示:比例尺)

例4.设计一座厂房,在平面图上用10厘米的距离表示地面上10米的距离.求图上距离和实际距离的比.

1.读题回答:这道题告诉了我们什么?要求什么?

教师板书:图上距离∶实际距离

2.思考.

(1)要求图上距离与实际距离的比,能不能直接用题中给出的两个数列式?为什么?就应怎样办?

(2)是把厘米化成米,还是把米化成厘米?为什么?就应怎样化?

教师板书:10米=1000厘米

3.求出图上距离和实际距离的比.

教师板书:10∶1000=1∶100或=

答:图上距离和实际距离的比是1∶100.

4.揭示比例尺的好处.

教师说明:因为在绘制地图和其他平面图时,经常要用到“图上距离和实际距离的比”,所以就给它起了个新的名字比例尺.(教师在“图上距离∶实际距离”的后面板书:=比例尺)有时图上距离和实际距离的比也能够写成分数形式.

板书:

图上距离是比的前项,实际距离是比的后项,比例尺是图上距离比实际距离得到的最简单的整数比.

教师强调:

(1)比例尺与一般的尺不同,它是一个比,不应带有计量单位.

(2)求比例尺时,前、后项的长度单位必须要化成同级单位.

(3)比例尺的前项,一般应化简成“1”.如果写成分数的形式,分子也应化简成“1”.

5.练习

北京到天津的实际距离是120千米,在一幅地图上量得两地的图上距离是2厘米,求这幅地图的比例尺.

(二)教学例5(课件演示:比例尺)

例5.在比例尺是1∶6000000的地图上,量得南京到北京的距离是15厘米.南京到北京的实际距离大约是多少千米?

教师提问:题目中告诉了我们什么已知条件?要求什么?

根据比例尺的好处,已知比例尺和图上距离,能不能用解比例的方法求出实际距离呢?怎样求?