八年级数学说课稿
第二阶段:探究新知阶段
1.观察与实验:在掌握上述概念的基础上,下面我们主要研究等腰梯形的性质.让学生拿出一张事先准备好的矩形纸片,提出问题:你能用一剪刀剪出一个等腰梯形吗?通过探究学生将这样折叠,剪裁.学生在剪裁的过程中会发现:等腰梯形是轴对称图形;对称轴是等腰梯形上下底中点的连线;同时还会发现等腰梯形边、角之间的一些数量关系.将猜想结论用文字语言表述,即得到命题1:等腰梯形同一底边上的两个角相等.通过对本章前两节的学习,学生对研究四边形性质的程序较为熟悉,知道从四边形的边、角、对角线、对称性这几方面入手.通过观察等腰梯形,猜想其对角线间的数量关系,学生会说相等,教师用几何画板进行验证,发现刚刚的猜想是正确的.将猜想结论用文字语言表述,即得到命题2:等腰梯形的两条对角线相等.在掌握等腰梯形的性质时,学生容易遗漏其对称性,在这里要着重强调以加深学生的印象.
2.探索与证明:命题1、2是我们经过实验归纳的猜想结果,为了使学生认识知识之间的联系以及培养学生的推理和逻辑思维能力,要对两个性质进行论证.虽然学生不是第一次接触命题证明,但掌握得并不熟练,因此首先教师引导学生将文字语言转化为符号语言.
等腰梯形同一底边上的两个角相等
已知:如图,在梯形ABCD中,AD∥BC,AB=CD.求证:∠B=∠C;∠A=∠D.
下面是学生活动,刚才经过三角形边的平移生成了梯形,那么反过来也可以将梯形转化为三角形和平行四边形的问题解决.由学生总结出证明等腰梯形的命题1的添加辅助线的2种方法:平移腰、作高.之后教师带领学生完成这个命题的证明过程,从而得到等腰梯形性质1.
证:方法一(平移腰)过点D作DE∥AB交BC于E,
∵AD∥BC,∴四边形ABED是平行四边形.∴DE=AB,∠B=∠DEC.
∵AB=DC,∴DE=DC.∴∠C=∠DEC.∴∠B=∠C.∴∠A=∠D.
等腰梯形的两条对角线相等
已知:如图,在梯形ABCD中,AD∥BC,AB=CD,连接AC、BD.求证:AC=BD.
在证明了性质1后,可以直接将其作为结论应用于命题2的证明,只需证明两个三角形全等即可.证明过程由学生独立完成.从而得到等腰梯形性质2.
证:∵AD∥BC,AB=CD,∴∠ABC=∠DCB.在△ABC和△DBC中
AB=CD,
∠ABC=∠DCB,
BC=BC, ∴△ABC≌△DBC(SAS).∴AC=BD.
等腰梯形性质2:等腰梯形同一底边上的两个角相等.
其应用格式为:∵AD∥BC,AB=CD,∴AC=BD.
等腰梯形的性质,为我们提供了一种新的证明线段相等、角相等的方法.
第三阶段:例题与练习
(一)例题
例1、已知:在梯形ABCD中,AD∥BC,AB=CD,AD=4,BC=12,∠C=60°,求AB的长.
本道例题的设计目的是为了让学生进一步探究解决梯形问题的方法,并练习应用等腰梯形的性质解题,从而进一步掌握本节课新知,体会其简洁性.
首先让学生仔细审题,接着引导学生分析:求AB的长要把它放在三角形或平行四边形中解决,再结合已知中∠C=60°的条件,可以利用等边三角形、或有一个角是60°的直角三角形的相关结论解题.下面是学生活动,由学生自行写出解题过程,再请学生代表进行展示,教师规范格式.
解:方法一(平移腰)过点D作DE∥AB交BC于E,∵AD∥BC,∴四边形ABED是平行四边形.
∴AD=BE=4.∴EC=BC-BE=8.∵AB=CD,∴DE=DC.∴∠C=60°.∴EC=DE=DE=8.∴AB=8.
方法二(延腰)延长BA、CD交于点E,∵AD∥BC,AB=CD,∠C=60°,∴∠B=∠C=60°
∴Rt△ABE≌Rt△DFC(HL).∴BE=FC.∴2CF=BC-EF=12-4=8.
∴CF=4.∵∠C=60°,∴∠CDF=30°.在Rt△DFC中,DC=2CF=8.∴AB=8.
(二)练习
1.在梯形ABCD中,已知AD∥BC,∠B=50o,∠C=80o,AD=5cm,BC=8cm,则DC=.
2.直角梯形的高是6cm,有一个角是30o,则这个梯形的两腰分别是和.
在例题之后我配备了两道填空题作为课堂练习,由学生独立完成,在学生解题过程中教师要关注其将数学语言转化为图形语言的能力.通过这两道题目的练习,使学生体会梯形辅助线的添加不仅局限于等腰梯形,还适用于任意梯形,进一步熟练梯形性质在解题过程中的应用.